截至目前,引用Bioss产品发表的文献共20640篇,总影响因子93542.19分,发表在Nature, Science, Cell以及Immunity等期刊的文献共53篇,合作单位覆盖了清华、北大、复旦、华盛顿大学、麻省理工学院、东京大学以及纽约大学等国际研究机构上百所。
我们每月收集引用Bioss产品发表的文献。若您在当月已发表SCI文章,但未被我公司收集,请致电Bioss,我们将赠予现金鼓励,金额标准请参考“发文章 领奖金”活动页面。
近期收录2022年9月引用Bioss产品发表的文献共291篇(图一,绿色柱),文章影响因子(IF) 总和高达1897.06,其中,10分以上文献34篇(图二)。
图一
图二
NATURE METHODS
[IF=47.99]
Anti-FOXN1 pAb; IF
作者单位:美国宾夕法尼亚州匹兹堡,阿勒格尼健康网络,细胞治疗研究所
Military Medical Research
[IF=34.915]
作者单位:总医院第五医疗中心肿瘤内科、高级肿瘤科
摘要:Background
Melatonin, a natural hormone secreted by the pineal gland, has been reported to exhibit antitumor properties through diverse mechanisms of action. However, the oncostatic function of melatonin on esophageal squamous cell carcinoma (ESCC) remains elusive. This study was conducted to investigate the potential effect and underlying molecular mechanism of melatonin as single anticancer agent against ESCC cells.
Methods
ESCC cell lines treated with or without melatonin were used in this study. In vitro colony formation and EdU incorporation assays, and nude mice tumor xenograft model were used to confirm the proliferative capacities of ESCC cells. RNA-seq, qPCR, Western blotting, recombinant lentivirus-mediated target gene overexpression or knockdown, plasmids transfection and co-IP were applied to investigate the underlying molecular mechanism by which melatonin inhibited ESCC cell growth.
ADVANCED MATERIALS
[IF=32.086]
Anti-Fibronectin/FN1 pAb; IF
作者单位:德国肺研究中心,亥姆霍兹慕尼黑,肺健康与免疫研究所和综合肺病学中心
JOURNAL OF CLINICAL
INVESTIGATION [IF=19.456]
文献引用抗体:bs-3195R
Anti-Phospho-IRF3 (Ser396) pAb; WB
JOURNAL OF CLINICAL
INVESTIGATION [IF=19.456]
文献引用抗体:bs-4089R
Anti-phospho-AKT2 (Ser474) pAb; IF
摘要:Early-stage temporomandibular joint osteoarthritis (TMJOA) is characterized by excessive subchondral bone loss. Emerging evidence suggests that TMJ disc displacement is involved, but the pathogenic mechanism remains unclear. Here, we established a rat model of TMJOA that simulated disc displacement with a capacitance-based force-sensing system to directly measure articular surface pressure in vivo. Micro-CT, histological staining, immunofluorescence staining, IHC staining, and Western blot were used to assess pathological changes and underlying mechanisms of TMJOA in the rat model in vivo as well as in RAW264.7 cells in vitro. We found that disc displacement led to significantly higher pressure on the articular surface, which caused rapid subchondral bone loss via activation of the RANTES–chemokine receptors–Akt2 (RANTES-CCRs-Akt2) axis. Inhibition of RANTES or Akt2 attenuated subchondral bone loss and resulted in improved subchondral bone microstructure. Cytological studies substantiated that RANTES regulated osteoclast formation by binding to its receptor CCRs and activating the Akt2 pathway. The clinical evidence further supported that RANTES was a potential biomarker for predicting subchondral bone loss in early-stage TMJOA. Taken together, this study demonstrates important functions of the RANTES-CCRs-Akt2 axis in the regulation of subchondral bone remodeling and provides further knowledge of how disc displacement causes TMJOA.
Advanced Science
[IF=17.521]
文献引用抗体:
bs-0397R; Anti-MMP9 pAb
bs-1313R; Anti-VEGFA pAb
bs-10802R; Anti-TNF alpha pAb
bs-1407R; Anti-HIF1 beta pAb
bs-4593R; Anti-MMP9 pAb
bs-0782R; Anti-IL-6 pAb
bs-6761R; Anti-IL-10 pAb
摘要:In addition to oxidative stress and impaired angiogenesis, the overexpression of metalloproteinases (MMPs) and proinflammatory cytokines, which are promoted by hyperglycemia, causes chronic inflammation in diabetic wounds. Herein, TA-siRNA nanogels are prepared for the first time on the basis of the self-assembling interaction between tannic acid (TA) and short interfering RNA (siRNA). The efficient, biodegradable nanogels are cross-linked with poly(vinyl alcohol) (PVA), human-like collagen (HLC), TA, and borax to prepare adaptive, conductive PHTB (TA-siRNA) hydrogels. In response to high levels of reactive oxygen species (ROS), the ROS-responsive borate ester bonds in the hydrogels are oxidized and broken, and TA-siRNA nanogels are released into cells to reduce the expression of the MMP-9. Moreover, the TA and HLC promote collagen expression, reduce inflammation, and ROS level. It is found that electrical stimulation (ES) promotes the in vivo release of TA-siRNA nanogels from PHTB (TA-siRNA) hydrogels and endocytosis of the nanogels. The combination therapy using ES and PHTB (TA-siRNA) hydrogels accelerates the healing of diabetic wounds by reducing the levels of ROS and MMP-9 and promoting the polarization of macrophages, production of collagen, and angiogenesis. This study provides insights on the design of functional gene-delivery and efficient therapeutic strategies to promote the repair of diabetic chronic wounds.
CHEMICAL ENGINEERING
JOURNAL [IF=16.744]
作者单位:上海交通大学医学院,上海市第九人民医院口腔种植科